MATH 504 HOMEWORK 1

Due Wednesday, September 12.
Problem 1. Let y be a set of ordinals.
(1) If y is nonempty, show that the \in-minimal element in y is unique.
(2) Show that $\bigcup y$ is an ordinal.

For the following assume that $\alpha, \beta, \gamma, \delta, \xi$ are ordinals.
Problem 2. Show that $\alpha<\beta$ implies that $\gamma+\alpha<\gamma+\beta$ and $\alpha+\gamma \leq \beta+\gamma$. Give an example to show that \leq cannot be replaced with $<$. Also, show that

$$
\alpha \leq \beta \rightarrow(\exists!\delta)(\alpha+\delta=\beta)
$$

Problem 3. Show that if $\gamma>0$, then $\alpha<\beta$ implies that $\gamma \cdot \alpha<\gamma \cdot \beta$ and $\alpha \cdot \gamma \leq \beta \cdot \gamma$. Give an example to show that \leq cannot be replaced with $<$. Also, show that

$$
(\alpha \leq \beta \wedge \alpha>0) \rightarrow(\exists!\delta, \xi)(\xi<\alpha \wedge \alpha \cdot \delta+\xi=\beta)
$$

Problem 4. Verify that ordinal exponentiation satisfies $\alpha^{\beta+\gamma}=\alpha^{\beta} \cdot \alpha^{\gamma}$ and $\left(\alpha^{\beta}\right)^{\gamma}=\alpha^{\beta \cdot \gamma}$.
Problem 5. Show in $Z F^{-}$(i.e. the $Z F$ axioms minus Foundation) that for any set X the following are equivalent:
(a) X can be well ordered,
(b) There is a $C:(\mathcal{P}(X) \backslash\{0\}) \rightarrow X$ such that $\forall Y \subset X(Y \neq \emptyset \rightarrow C(Y) \in$ Y).

Hint for $(b) \rightarrow(a):$ Fix $p \neq X$, and let $C(Y)=p$ if $Y \notin \mathcal{P}(X) \backslash\{0\}$. Define by transfinite recursion,

$$
F(\alpha)=C(X \backslash\{F(\xi) \mid \xi<\alpha\})
$$

Problem 6. (Well founded recursion) Suppose that E is a well founded relation on a set P, and that $F: V \rightarrow V$ is some class function. Show that there exists a function G with domain P, such that for every $x \in P$, $G(x)=F(x, G(\{y \in P \mid y E x\}))$.

